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Abstract—In a two dissimilar materials joint, near the edges of the interface, very high stresses exist
after a homogeneous change of temperature due to the different elastic constants and the different
thermal expansion coefficients. In most cases, stress singularities occur for elastic material behaviour.
To avoid the stress singularities, a continuous transition in the material properties can be introduced.
In a joint with such a functionally graded material (FGM), the finite element method (FEM) is
generally used to calculate the stress distribution. In the middle of a thin joint with a graded material
the stresses can be calculated analytically by using the beam theory or the plate theory. For a thick
joint or in the edge range of a joint no analytical form has been found so far to describe the stresses.
In this paper the Mellin transform method is used to describe analytically the stresses in the edge
range of a joint with a graded material. Four examples will be presented to show the good agreement
between the stresses calculated from FEM and the analytical description in a joint with a graded
material under a thermal loading. © 1998 Elsevier Science Ltd.

NOTATION

stress function

temperature change

see eqn (1)

Young’s modulus

shear modulus

shear modulus at 6 = 0

Poisson’s ratio

thermal expansion coefficient

polar coordinates

r/L, L is a characteristic length of a joint
polar coordinates

radius with temperature change in a semi-infinite joint
Ry/L

temperature change in a semi-infinite joint
temperature change in Mellin domain, see eqn (10)
Mellin transform parameter

stress tensor

normal stress component

shear stress component

displacement component in the r direction
displacement component in the 8 direction

m and constants, see eqn (5)
(s, 0) see eqn (18)
6(s. 0) see eqn (20)

T,

n

B

temperature change in Mellin domain, see eqn (25)
see eqn (28)

)] see eqns (69), (70) and (71)

s,

n

w!l

pole of 6,(s, 0)
stress exponent, w, = — (s,+2)

INTRODUCTION

If two dissimilar materials are joined at high temperature, very high residual stresses develop
near the free edge of the interface during cooling to room temperature. In most cases, the
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stresses are singular for elastic material bechaviour. These stresses may cause failure directly
after cooling or after a small amount of mechanical loading. In order to reduce the residual
stresses, an interlayer can be introduced between the two materials. By adapting the
properties of the interlayer to those of the joined components and by varying the thickness
of the interlayer, the residual stresses can be greatly reduced compared to those occurring
when two materials were joined directly [see Munz et al. (1995)]. However, due to the
discontinuity of the material properties at the interfaces, in most cases, there are still stress
singularities near the free edge of the interface. The stress singularity only gets weaker by
the introduction of a favourable interlayer.

Another way of reducing the residual stresses is the application of a graded interfacial
zone with a continuous change of all material properties. In the last 10 years many
investigations have been performed with regard to the graded materials, which are called
functionally graded material (FGM). These investigations have concentrated on the fol-
lowing aspects : (a) manufacturing of FGM [see Nagano and Wakai (1993)]; (b) design of
FGM [see Hirano et al. (1990)]; (c) describing the stress distribution in FGM [see Arai et
al. (1990) ; Williamson ez al. (1993)]; (d) stress field at the tip of the crack in FGM [sce
Erdogan (1990)] etc. Up to now, for the description of the stresses in a joint with a graded
material only the finite element method (FEM) has been used [see Arai et al. (1990);
Williamson ef al. (1993); Yang and Munz (1995)].

In this paper, the Mellin transform method is used to describe analytically the stresses
near the free edge of the interface in a joint with a graded material under a thermal loading.
Four examples will be presented to show the good agreement between the stresses calculated
from FEM and the analytical description in a joint with a graded material.

THE BASIC EQUATIONS
When a thermal loading is taken into account and body forces are disregarded, the
stress function @ in a homogeneous material should satisfy the equation
ViO+Vi(gT) =0 1)
with

oF for plane stress

=94 aF
1 ] 2 for plane strain

(1—=v)

where T is the temperature change, £ Young’s modulus, v Poisson’s ratio, o thermal
expansion coefficient and ¢ is a constant. In a graded material, in which the material
properties are dependent on the coordinates, ¢ is not a constant, but ¢ = ¢(x, y) = ¢(7,0).
We can imagine that ¢ T is the effective temperature change and the material is homogeneous.
Under this assumption, for a graded material we obtain the same equation like eqn (1) for
the stress function. It should be noted that for the boundary conditions the real inhomo-
geneous material properties should be considered.
The relations between the stress component and the stress function ®(7, 6) are

L 20 ,
TR o @
*®
Oop =, (3)
or”
a (o )
0= 7 57\ 700 @
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Fig. 1. The geometry investigated.

where r and 6 are the polar coordinates (see Fig. 1). The introduction of a dimensionless
quantity 7 = r/L is for the convenience of the Mellin transform, where L is a characteristic
length of the joint (see Fig. 1b).

By using the Hook's law between the stresses and the strains, and the relations between

the strains and the displacements, the displacements u = u(F,0) and ¢ = v(7,0) in r and 0
direction can be calculated from the stress function as follows:
cu 1 [e® PO m q
R i _ ]_7 2(1) a1 .
or ZG{f(?F+,72@92 ( 4>V }+ EKT ©)
u v v 1D R
R T (6)
Fe0  oF F G lprap FoFol
with
4 f lane st
—_— or r

4(1—v) for plane strain

and
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{l for plane stress

(1—v?) for plane strain

If a stress function, which satisfies eqn (1) and the boundary conditions, is found, the
stresses in a joint with a graded material can be described analytically. The aim of this
paper is to find a solution of such a stress function and to determine all its unknown
coefficients. The Mellin transform method is used to solve this kind of problem, because in
Mellin domain eqn (1) is replaced by an ordinary differential equation and it is much easier
to find a general solution of an ordinary differential equation. In the Mellin transform
method a semi-infinite space is considered. Therefore, at first a semi-infinite joint with a
graded material under the temperature change

T, forr<R,
0 forr> R,

is treated.

SOLUTION IN THE MELLIN TRANSFORM DOMAIN

The Mellin transform of a function ®(F, 8) is defined as [see Dautray and Lions (1988)]

860 = | 0.0V ar o

0

where s is the parameter of the Mellin transform. The parameter s should be chosen such
that the integration in eqn (7) is valid. The property of the Mellin transform is

[(s+p)

PldF = (1)
=D I'(s+p—q)

fm 7o0.0 Bs+p—4.0) ®)

P
oF

0

where I'(x) is the I'-function.
The Mellin transform of eqn (1) then reads:

& R . 07 A
|:s2 + -6—9-2} [(s+2)2 + ﬁ}q)(s, 0)+ [(s+ 2)%+ ﬁ] T(s+2,8) =0 )
with
. o R,
T(s+2,0) = f g(rF, ) TP+ dr = TOJ g(7, 0y + 1 dr (10)
0 0

and R, = R,/L. Here, L has no specific meaning. For a finite joint, it is a characteristic
length of the joint.
If s is considered as a parameter, eqn (9) is an ordinary differential equation of the
variable 8. For each value of s, its solution is
D, (s5.0) = DL(5,0)+ DY (5, 0) an
with
(i),f.(s, 9) — Ak eisH +1‘i.k e-‘ix(-)+Bk ef(s+2)1?+Eke—l(f+2)9 (12)

and
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(s, 0) = — % {sin(s(?) JT‘,((S +2, 8)cos(s0) df —cos(s6) jfk (s+2, B)sin(s0) dB}
(13)

where 4,, B, (4., B, is the conjugate complex number of 4,, B;) are unknown complex
coefficients and k = 1, 2 for materials 1 and 2. The function @}c(s, ) is the general solution
of the homogeneous part of eqn (9), which is dependent only on the material properties
and the joint geometry, independent on the loading. The function ®}'(s, ) is the special
solution of eqn (9), which is dependent on the loading. If the coefficients 4, and B, are
determined, the solution of the problem in the Mellin domain is known. In order to
determine the unknown coefficients 4, and B, the boundary conditions expressed by the
Mellin transform have to be used. For a joint with free edge they are:

for the free edges
0= 9] :f,.gl +i6'ggl =0
6 - 62 . f,g;‘f‘id'g(;z = 0 (14)

at the interface
0 = 0:1,9 +iGoe) = Tr00+ 160>

0=0:d,+i5, =ty +ib,. (15)

The physical meaning of eqn (14) is that, at the free edges 8 = 6, and 8 = 8,, the normal
stress o, and the shear stress 1,5 are zero. The physical meaning of eqn (15) is that at the
interface @ = 0 the normal stress oy, the shear stress t,o and the displacements u and v should
be continuous in materials 1 and 2. To use the boundary conditions the stresses and the
displacements have to be transformed in the Mellin domain.

From the eqns (2)—(4) we obtain the Mellin transform of the stress components as
follows :

2

6.,(s,0) = <6~ —s> (s, 0)

06?
Goo(5,6) = (s+1)sD(s, 0)
od(s, 0
t0(s.0) = (54 1) 28D, (16)
00
The Mellin transform of the displacement u can be obtained from eqn (5) as:
1 °° 1 (0® 0*0® m q
- - _ s+ | )Y (1" Y2 1 =
#s+1,0) (s+l)'|:) d |:2G {mr* Py <‘ 4>V ®}+ E'CT]d'
= i(s, 6) 17

with

1 ® 1 [é® o*O® m q
7 = — F+ 1) {1 2 9 -
(s, 0) (s+l)L F [26 {r‘@r’+ ey (1 4>V (I)}JrEKT:Idr. (18)

The Mellin transform of the displacement » can be calculated from:
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du(s+1,0) . N R L o _
0 —(A+2)L(S+1,6)-—J 7 Glrog 7ordd drF

0

= i(s, 0) (19)

“ 1 { o0 0’0
=( _ s~ 1y | _ 7V
o(s,0) = L F [G {,72 20 f@F@OH dr (20)

which is the Mellin transform of eqn (6).
The complex form of the stresses and displacements in the Mellin domain can be given

with

as

T.4(s,0) + iGyo(s.0) = (s+1) (f + is) (s, ) 2n
o0
and
(s +1,0) +ib(s +1,0) = (s, 0) +i—(s_{]_ 5 [ﬁ”(;o N 0)} 22)

For using the boundary conditions [see eqns (14) and (15)] we need the values of d(s, 8) in
eqn (18) and ©(s, 6) in eqn (20) at the interface 0 = 0. We assume that at 8 = 0 the shear
modulus G is a constant, but 6G/06 # 0. This is, for instance, the case at the interface of a
joint with one homogeneous material and one graded material. Because the variation of
the Poisson’s ratio v in a graded material has a small effect on the stresses [see Eischen
(1987)], we assume that in a graded material the Poisson’s ratio is a constant. Then from
eqn (18) we have

#(s.6) m 0 } - T,(s+2, ())}

1 { ms " L. 0)
=|z={s— — —— s (s, ) — ———
P 2G, 4(s+1) 4(s+1) pp? .

dit(s, 0 1 I 0 L) 2
AT e | R TR A G LT
bl [ﬁ J {69 e (1 - m>V2(D}dr'} | Tus+2.0) } (24)
2G, |86 ), |FoF 72 o0? 4 v—0 a0 4=0
with
T,(s+2,0) = J: f](_r;}@ kTP dF = T, fu q—(%@;cr"‘+ " dr (25)
and
Gy =Glo-y. (26)
From eqn (20) we have
55, O)lg_o = GL(, [(H 1) aqa(g;, 0)] » @7)

From eqns (22) and (24) it can be seen that the solution of the problem is strongly dependent
on the profile of the shear modulus G.
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In the general case, i.e. the function form of the shear modulus G is arbitrary, to
determine the unknown coefficients 4, and B, in eqn (12) we need to substitute eqn (11)
into eqns (21)—(24) and (27), and into eqns (14) and (15). The stresses and displacements
in the Mellin domain can then be calculated from egns (16), (17) and (19). The solution of
the problem is dependent on the function form of the material properties (G, E, v, ). The
more complicated the function form of G, E and « is, the more difficult it is to obtain the
analytical description of the stresses near the free edge of the interface in a joint with a
graded material. It is impossible to give a generally explicit expression of the coeflicients 4,
and B, as a function of the material properties, the joint geometry and the loading for an
arbitrary transition profile in the graded material. Here, only a general and possible pro-
cedure is given to obtain an analytical description of the stresses near the free edge of the
interface in a joint with a graded material.

In the following we consider the case, in which the graded material has the profile of
a polynomial and it is only dependent on the coordinate y, i.e.

6= E0O _ ds Bt G4 Dy + By +
= 2(iay) - ATBITCE 4Dy B
= [A + Brsin(0) + CF* sin*(0) + D7’ sin® (0) + E7* sin®(0) + -+ (28)
and
0G 37 29)
[l B A
01, . (

where there is 7 = y/L. For this case an explicit expression for the coefficients A, and B,
can be given as a function of the material properties, the joint geometry and the loading.

In the boundary conditions only the displacements are related to the material property.
For the profile given in eqn (28) the displacement condition can be obtained by insetting
eqn (29) into eqn (23), eqn (24), eqn (27) and then into eqn (22), it is:

2G,[a(s+1,0)+i(s+1.6)]

=0

o . ¢ . 5
m (80 ~1s> (69 —i(s+ ))

8 . 2G, T, (s+2,0)
= (“’%)l I+ 45+ D(5+2) POl

i—0 (s+1)

(B m Pd(s+1,0) ms+1)\ -
i {En |:4(5+ D(s+2) 00° a (1 a 4(5'+2)>(D(6+L9):Hn—0

}. (30)
=0

To give an explicit expression of the unknown coefficients 4,, 4, B, and B, in eqn (12),
they are separated into real and imaginary parts as

0=0

2G,  3T,(s+2,0)
(s+1D(s+2) o0

Ak = C]\+I.D]( /ik = C]\,"‘I'D/\
Bk:Fk‘i—I.H/‘ Ek:Fk_l'HA. (3])
By substituting eqn (11) in eqns (21) and (30) and then in the boundary conditions eqns

(14) and (15), and separating the real and imaginary parts of each equation, the coefficients
C,, D;, F, and H, can be determined.
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In the following one special case with 0, = —0, will be treated and the explicit
expressions for the calculation of the coefficients C,, D;, F, and H, will be given. After
simplifying and solving the equations from the real and imaginary part, relations for the

coefficients C,, D,, F, and H, can be obtained. They are:

cr
= G raAAr

cr

© = A A

D, = DY
P (st s)AA%

D%
D, =——2
P s ts)AAr

F*

=F= =
£ 2= F (s+s5,)A,A*

P
T s+ 5,)AA%
oo HT
2T (545)AA*
with

F* = 1fa,,As —t3a,, A,
HY = tfa,,As — tfa¥
H* = R¥A*— H¥

(s+s,)A*A,

1
CT ='{1?*A4+HTA2~
s 2

ff"l (s+2, 0)sin(s0) dO

(s+s,)A*A,

1
Cct =E{F*A4+HTA2—RMZA*— >

i A*A
D*— - {—F"‘A] — H¥A, —L“"z)——l

S jf’, (s+2,8)cos(s0)do

(s+35,)A*A,

1
D’{=§{F*A1+HTA3—R’1“A3A*— 2

and

a;; =24,

a;; =2(A;—(s+2))

m . 1 2GmA,
ar| = 2 {(A4+<1+ s+1‘>S>(BZ—B|); -+ -_‘———AS —(s+2)

-

0:0,}

J T,(s+2, )sin(s6) dO

)

J T>(s+2, 6)cos(sh) d6

(32)

(33)

(34)

(35)

(36)

(37

(38)

(39
(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)
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. .1
ay; = 2A2(32“Bl);

m s o1
a?, =2 {<A4+ (l + S+—]>S)(Bz _Bl)EAS +ZGOWIA1}

R¥ =R, (s+s,)
R¥=R,(s+s,)
R¥ = Ry(s+s,)
R¥= R,(s+s,)

tf = R¥A; — R¥A,

o1
1= [RTH—RZ‘-{- 2RYB, ;j|A5 —2GomR%

with
A, = sin(2(s+1)0,) + (s + 1)sin(26,)
A, = —sin(2(s+1)8,) + (s + 1)sin(26,)
Ay = cos(2(s+1)8,) + (s+ cos(28))
A, = cos(2(s+1)0,) — (s+ T)cos(28,)
As =A,—(5+2)
A =ay a,, —apya;,
A* =AAK;
1 8, . 0.
R, = {J T, (s+2, 6)sin(s0) dH—J
2 0 0
1% . b2
R, =§{J T, (s+2, 6)cos(s6) dB—J T,(s+2, 0)cos(sth) db
0 0
R3 = é {B’z jf2(5+2, B)SIH(SG) do _E] J\Tl (S+2, Q)SIH(SG) de
0=0,
R — mG, eT,(s+2,0) oT,(s+2,0)
C A+ D(s+2) a0 - 20 o

. 2G3 0T, (s+2,0) &8T5 (s+2.6)
(s+1)(s+2) 06 o6

0=0

+ B, {ﬁjfl(s+3,9)sin((s+1)e) do| +

" Ty(s+2, 0)sin(s6) do}

L
ooo | As+1D(5+2)

1269

(49)

(50)

(51
(52)
(53)
(54)

(55)

(56)

(57)
(58)
(59)
(60)
(61)
(62)

(63)

(64)

(65)

(66)
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. ] m
- B, T, (s+ 3. O)sin((s + 1)8) do + Ty (s+3.6) } (67)
i | o3 mans s ve0] 4 o
where s, is the solution of the equation A,A* = 0.
Finally, the stresses in the Mellin domain can be calculated from:
I;A (Y 0)
l/l\(S H) (S+ \,,)A*A (68)

with
G (8, 0) = — CRs(s+ 1)cos(s0) + Df2s(s+ 1)sin(s0)
— F2(s? + 55 +4)cos((s +2)0) + H2(s* + 55+ 4)sin((s + 2))

4 (s+5,)A*A>(s+1) [sin(s(?)JT‘k(s + 2, 0)cos(s8) do

—cos(st) JTA (s+ 2, B)sin(sB) d():' —(s+5,)A*A, T (s+2.0) (69)

Gone (5.0) = s(s+ 1) {C;"Z cos(st) — D2 sin(st) + F{2 cos((s +2)0) + H}2 sin((s + 2)8)

— %(s +5,)A*A, [sin(s@) J T, (s+ 2. 8)cos(s8) A8 — cos(s) JTA (s+ 2, B)sin(st) dﬂ}} (70)

G (5,0) = —2(s+ 1) {CZ‘S sin{s0) + Ds cos(s0)
+ FE(s+2)sin((s +2)0) + H¥(s + 2)cos((s +2)0)

+ %(s+.v,,)A*A3 [cos(s()) [71 (s+2, 0)cos(s0) dO + sin(s0) Jf,‘(s +2, 0)sin(s0) da}} (71)

where the coefficients C¥, D¥, F¥, H} are known from eqns (39)—(45), and k= 1 and 2 is
for materials 1 and 2.

SOLUTION IN THE POLAR COORDINATE SYSTEM

Our aim is to calculate the stresses in a polar coordinates system, i.e. g,;(s, #), which
is the reversal transform of é,,(s, 0). For the calculation of the reversal of &,,(s, ) we need
the poles of 6 (s, 8), which are defined as follows: if lim, . &;,(s,0) — o0, s, is the pole of

6,:(s.0). From eqn (68) it can be seen that the possible poles of &,,(s, 0) are the solutions
of A, A* = 0.

From the definition of the reversion of the Mellin transform, the stresses in a polar

coordinate system can be calculated by

1 (e )
a,(F.0) = i f 6,(s, 0)F O+ dy (72)

i

where 7 must be chosen so that the integration in eqn (72) exists. According to the residual
principle the stresses in the polar coordinate system can be calculated by
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0,(r,0) = Y res{d;(s,, Ot}

1 ) M—1 ) !
= L Groniim s (=) ey 07

I - 6,(s,0)
_ I WM ASE e (542) 7
A\-;;(M—l)!“‘l”n‘:ds“‘{(s ) T s)A B, } (73)

where s, is the pole of Mth order of (s, 0).
If 5, 1s the pole of the first-order of ¢;(s, #), the corresponding stress term has the form
as follows :

Gl 0) = F[ £,,(0, K,) + h,, (0)] (74)
with w, = —(s,+2). If 5, is the pole of the second-order of 6,,(s, ), the corresponding stress
term is

6i/r1(r’ 0) = F””[./;/'n(()s Kn) +gun(8)ln(F) + hl[!7(9)]' (75)

In eqns (74) and (75) the term f,,,(6, K,) will be calculated from
,f;m(()s Kn) = Knl E/’nl (9) + KnlE’jnl (9) + KnBE/’nK (9) + EIRS (76)

where K,, (! = 1,2,3,...) is a function of R, and is dimensionless. How many terms there
are in eqn (76) is dependent on the value of w, and the order of the pole. w, is the stress
exponent and F,,,(0), g,,(0) and h,,(0) are the angle functions, which can be determined
analytically for each pole s, by setting eqns (68)—(71) into eqn (73). The angular functions
have a unit of the stress, i.e. MPa or GPa.

From eqn (74) we know that if s, = —2 is the pole of the first-order of 6,(s, ),
the corresponding stress term is independent of the coordinate r. Furthermore, as the
displacements u and v are proportional to r~“*Y only the solutions with 5, < —1 have a
physical meaning (—1 is the y in eqn (73)). The case with s = —1 is corresponding to the
rigid body displacement and if s > — 1, the displacements at r = 0 are infinite.

Generally, for each pole s, of the first- or second-order of (s, (), the corresponding
stress term can be written as follows

6., (r, 0) = P [ [0, K,) + g, (0)In(F) + h;, (0)]. 77

For the pole of the first-order of 6,(s, 0) there is always g,,(0) = 0.
Finally, considering N possible poles of &,(s.{)), the stresses in a joint with a graded
material can be calculated by

N

(7,-,(", 9) = Z { (}‘,«’L)“'“[_f,',,,(e, Kn) +g1/’n(6)ln(r//l‘) + hi/n(())] ] . (78)
1

in=

In eqns (78) and (76) the angular functions F;,, g,.(6). h,,,(0) and the stress exponents ,
can be determined analytically, they are a function of the profile of the shear modulus G
and the thermal expansion coefficient o, and also a function of the value of the Poisson’s
ratio v and the geometry (angles 6, 8,). For a semi-infinite joint R, is given, therefore, K,,
is well known. The stresses ¢,,(r. 0) is proportional to the temperature change 7.

In the following, the joint with 8, = — 8, = 90° will be considered more in details. To
calculate the quantities £,,,, g,,,((), #1,,(6) and the stress exponents w, from eqns (68)—(71)
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and (73) at first we need to know the poles of 6,(s,, #), which are the solutions of A;AsA = 0.
For 0, = -0, = 90° from eqn (58) there is

A, = —sin((s+ 1)m). (79)
It can be seen that s, = 0, +1, +2, +3,..., +n,...are always the solution of the equation
A, = 0.Intherangeof s, < —1,s,= —2, -3, —4,..., —n,...,may be the poles of (s, 8).

We also need the solution of A; = 0. For 6, = 90° we have (see eqn (61))
As =cos[(s+ Dr]—(s+1)—(s+2) = cos[(s+ 1)rn] —25—3. (80)

Because there is always — 1 < cos[(s+ 1)n] < 1, the solution of A; = 0 is in the range of
—2 < s< —1. It is known that in a quarter-planes joint with a graded material and a
homogeneous material at the interface the material properties are continuous, therefore,
there is no stress singularity. This means that the stress exponent w, should be greater than
zero, i.e. s, < —2. In the range of 5, < —2, the solution of A; = 0 is not the pole of 6,(s, §),
except for s = —2.

Now, we will look for the solution of the equation A = 0. For a joint with one
homogeneous material (material 1) and one graded material (material 2) we have B, = 0,
and the case [: B, = 0 and the case II: B, # 0.

For the case I: B, = 0, A is very simple, which is (see eqn (62))

A = —8(s+2)mG, sin[(s+ )x]. (81)

The solution of A =0 1s independent of material properties and its solution is also
s, = —2,—3,—4,..., —n,.... This means that as long as the polynomial (see eqn (28))
has no linear term, the possible poles of 6,(s, ) are independent of the material properties.
Theyares = —2, -3, —4,..., —n,....

For the case I1: B, # 0, there is

A = 4B, {(2—m)cos[(s+ 7] +4s” + 2sm+8s+3m+2} —8(s+2)mG, sin[(s+ D] (82)

The solution of A = 0 is dependent on the value of B,, m (the Poisson’s ratio v and the
stress state (plane stress or plane strain)) and G, (the shear modulus at the interface).

To show the agreement of the stresses calculated from FEM and eqn (78), the following
four examples will be given, which are

(A) 53% =0 and rﬁf“(;;z’g) =0
(B)aa% - =0 and @%éﬂ o #0
() (;ng - #0 and ih(;:—gﬂ - =0
(D) 60(;2 #0 and OTan(5+2.6) 42"(292‘9) _#0,

Case (A) is corresponding to that in the profile of the Young’s modulus E and in the
thermal expansion coefficient « there is no linear term. Case (B) is corresponding to that in
the profile of the Young’s modulus E there is no linear term, but in the thermal expansion
coefficient o there is a linear term. Case (C) is corresponding to that in the profile of the
Young’s modulus E there is a linear term, but in the thermal expansion coefficient « there
15 no linear term. Case (D) is corresponding to that in the profile of the Young’s
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modulus E there is a linear term, and also in the thermal expansion coefficient « there is a
linear term. From eqn (30) it can be scen that all combinations
(B=0,B#0,0T.(s+2,8)/00|y_o =0,0T,(s+2,0)/00 |4_o # 0) are considered in the cases
(A)—(D).

EXAMPLES AND DISCUSSIONS

Four examples, in which all special cases are considered, will be given to show the
agreement of the stresses calculated by FEM and with eqn (78). For all the examples the
thermal loading is 2 homogeneous temperature change of 7, = — 100 K and the geometry
is 6, = —6,=90°, H,/L=H,/L =2 (see Fig. 1b). It is assumed that material 1 is a
homogeneous material and material 2 is a graded material. The results are for plane strain.
The only difference between the examples is that the material properties and the profile for
E and « are different.

Equation (78) is deduced for the case of a semi-infinite joint with the temperature
change:

T, forr<R,
0 forr>R,

but it can be used for a finite joint with a homogeneous temperature change to calculate
the stresses near the free edge of the interface in a joint with a graded material. This means
that the angular functions F;;,(0), g,,(0) and h,,(8) in eqns (74)—(76) are the same for a
finite joint as for a semi-infinite joint, only for a finite joint the quantity R, is unknown,
therefore, the factors K,, in eqn (76) are unknown. They have to be determined from the
stresses calculated by FEM. The method to determine the factors K,, for a finite joint will
be simply presented as follows. In eqns (78) and (76) the quantities F,;,(0), ¢,.(6), h,,(6)
and w, can be calculated analytically, if the stresses are known from the FEM, we can
define one quantity II

N

M
Hlj = ]Z {GEEM (rlv 6/) - Z {(r[/L)w” [Knl Fijnl (01) +Kn2Fijn2 (9/)
=1

n=1

2
+ K3 Fis (0) + 4+ 94, (0)In(r,/ L) + b, (0)]} } (83)

where there is ij = xx, yy, xy, or rr, 80, r6, M is the number of the used points for the
determination of the K,, factors. In principle, any stress component at any point (r,, 8,) near
the free edge of the interface can be used. In general, we use the points along a line,
i.e. 8, is a constant. Following the least square method the factors K,, can be determined
from

y=0. (84)

For the calculation of the stresses from FEM a standard element with eight nodes is used.
The mesh needs not very fine. In the FE-code program ABAQUS it is possible to give the
material properties in the graded material as a continuous function by using the subroutine
UMAT.

Example 1
The materials data for example 1 are
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E, =100GPa v, =025 o, =2.5%10"%/K
E. = 1004 505% = 100+ 507 sin’(9) GPa

[2.5+55%] % 10~ %/K = [2.5+ 57 sin®(0)] = 10~ /K

R
S
Il

Vo = v,.

For this example we have ¢G,/30 |,_, = 0 (i.e. B, = 0) and 8T,,(s+2,6)/30 |,_, = 0. This
is the case L, i.e. the poles of &,(s, 0) are independent of the value of v,.

The poles of 6,(s,0) are s = —2, =3, —4, —5, —6,.... To calculate the stresses from
eqn (78) five terms are used, where s = —2, — 3, —5 are the poles of the first-order of
6,4s.0) and s = —4, —6 are the poles of the second-order of 6,(s, ).

To check eqn (78) the quantities used in eqn (78) to calculate the stresses near the free
edge of the interface in a joint with a graded material are given as follows for different
components along different directions :

for8=0"
G n W, (8, K), GPa gim(t)), GPa him(8), GPa
a, 1 0 0 (] 0
2 1 0 0 0
3 2 0.04053 0 —0.03125
4 3 —0.0252 0 0
5 4 0 0 0.048
O 1 0 0.0246 0 0
2 l —0.0696 0 0
3 2 —0.081 0 0.1042
4 3 0.051 0 0
5 4 0 0 —0.08021
O, 1 0 0 0 0
2 1 —0.0496 0 0
3 2 —~0.0325 0.0531 0.0221
4 3 —0.0921 0 0
S 4 0.082 —0.042 —0.0078
for 8 = 90
o, n W, Jin(0. K,), GPa 9in(0), GPa by, (0), GPa
a,, 1 0 0.0246 0 0
2 1 —0.0496 0 0
3 2 0.0405 0 0.01042
4 3 —0.007 0 0
5 4 0 0 0.00104
for 6 = 45°
a, n W, J(0.K,), GPa giu(0). GPa hy;,(8), GPa
a, 1 0 0.0123 0 0
2 1 —0.0071 0 0
3 2 —0.0405 0 0.02368
4 3 0.0508 0 0
h) 4 —0.041 0.021 —0.004
T 1 0 0.0123 0 0
2 1 —0.0772 0 0
3 2 0.073 —0.05305 —0.01926
4 3 —0.0359 0 0
S 4 0.041 —0.021 0.02
G 1 0 0.0123 0 0
2 1 —0.0421 0 0
3 2 —0.0021 —0.0256 0.0046
4 3 0.0653 0 0
5 4 —0.041 0.021 0.019
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for § = —45°
o, " w, fn0.K,), GPa 9,.(0). GPa h,.(8). GPa
a, 1 0 0.0123 0 0
2 1 -0.0421 0 0
3 2 —0.0405 0 0.0597
4 3 —-0.0142 0 0
5 4 0.041 —0.021 —0.024
Gois 1 0 0.0123 0 0
2 1 0.0246 0 0
3 2 0.008 0.05305 —0.0224
4 3 0.0359 0 0
5 4 —0.041 0.021 0.081
- 1 0 —0.0123 0 0
2 1 —0.0175 0 0
3 2 0.0231 —0.0256 —0.0475
4 3 0.0653 0 0
5 4 —0.041 0.021 —0.04
for 6 = —90°
o n w, fin(8,K,), GPa gim(0), GPa h(0). GPa
a,, 1 0 0.0246 0 0
2 1 0.0496 0 0
3 2 0.0405 0 —0.07292
4 3 0.007 0 0
5 4 0 0 —0.032

Comparisons of the stresses obtained by FEM and with eqn (78) are given in Figs 2-6 for
different components along different directions. It is shown that when five terms are used
in eqn (78) for r/L <0.1 they are in good agreement. For the range of r/L>0.1 the stresses
calculated with eqn (78) deviate from those of FEM. It is due to the effect of the higher-

order

terms on the stresses.

Example 2
The materials data for example 2 are

E, =100GPa v, =025 a, =2.5%10"°/K
E, = 100+ 507% = 100+ 507 sin>(6) GPa
oy = [2.5—57] * 10~ ¢/K = [2.5+ 57sin(0)] * 10-¢/K

vy =V,

]

0.030

0.020-

0.0104

0.000+

-0.010+

_0020 TTT T T TTT T T TTT T T TTT T lﬁlLl
1E-04 1£-03 1£-02 1E-01 1E+00
r/L along the line8 = 0

Fig. 2. Comparison of the stresses (in GPa) calculated by FEM (symbols) and with eqn (78) (lines)
along 6 = 0 for example 1.
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0.0050~

0-0000 TT T T TT17 T T T71T T T 177171 T T 17T
1E-04 1E-03 1E-02 1E-01 1E4+0
r/L alona the line 8=90

Fig. 3. Comparison of the stresses (in GPa) calculated by FEM (symbols) and with eqn (78) (lines)
along 6 = 90 for example 1.

0.0450 o
1 o
o
- (o]
2 0.0400
g\,
0.0350 '.'
/ o]
0.0300+
0.0250+ °
OOZOO T T 1 1T T T T 1T 7T T T 17T T T 11T 1
1E-04 1E-03 1E-02 1E-01 1E4+00

r/L along the line 8=—90

Fig. 4. Comparison of the stresses (in GPa) calculated by FEM (symbols) and with eqn (78) (lines)
along § = — 90 for example 1.

0.0150+ |

0.0100

0.0050

0.0000

-0.0050 T T T T T T T T
1E-04 1E-03 1E-02 1E-01 1E+00

r/L along the line 8=45

Fig. 5. Comparison of the stresses (in GPa) calculated by FEM (symbols) and with eqn (78) (lines)
along 6 = 45 for example 1.
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0.0150 Y
0.0100
0.0050 $
fed
S
0.0000 &
a
~0.0050- =\
oD
-0.0100+ 2
O ~6 0 6000 %6
_00150 T T 117 T T 7 17 T TT1T T 17T
1E-04 1E-03 1£-02 1E-01 1£+00

r/L along the line 8=—45

Fig. 6. Comparison of the stresses (in GPa) calculated by FEM (symbols) and with eqn (78) (lines)
along 8 = —45 for example 1.
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where the angle 6 is negative. For this example we have 8G,/d6 |,_, = 0 (i.e. B, = 0) and
3T, (s+2,0)/80 |,_o # 0. This is the case I, i.e. the poles of 6,(s, 6) are independent of the
value of v,, but the right-hand side of eqn (30) is different as that for example 1. The poles
of 6,(s,0) ares = -2, -3, -4, -5,.... To calculate the stresses from eqn (78) four terms
are used, where s = —2 is the pole of the first-order of é,(s, §) and s = —3, —4, —5 are the
poles of the second-order of 6,(s, 0).

The quantities used in eqn (78) to calculate the stresses near the free edge of the
interface in a joint with a graded material are as follows for different components along
different directions:

for8 =10°

a, n o, fm(6.K,), GPa gin(8), GPa hin(0), GPa
g, 1 0 0 0 0

2 1 0 0 —0.0212

3 2 0.025 0 —0.006255

4 3 —0.037 0.0212 0.008848
O 1 0 0.0226 0 0

2 1 —~0.0297 0.0424 0.0212

3 2 —0.0499 0 0.0208

4 3 0.0635 —0.0424 0.0071
T, | 0 0 0 0

2 1 0.0178 0 —0.0167

3 2 0.0246 0.0106 0.0044

4 3 —0.0521 0 0.0458

for 8 = 90°

a, n w, Jia(0, K,), GPa g5.(0), GPa h;,(0), GPa
G, 1 0 0.0226 0 0

2 1 —0.0178 0 —0.01667

3 2 0.025 0 0.0021

4 3 —0.0261 0 —0.00208
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for 0 = —90
o, ] w, Jia(8,K,), GPa i), GPa h, (), GPa
a, 1 0 0.0226 0 0
2 1 0.0178 0 —0.05
3 2 0.025 0 —0.0146
4 3 0.0261 0 —0.0312
for 0 = 45°
oy n W, S0, K}, GPa g0, GPa h,,(8), GPa
o, 1 0 0.0113 0 0
2 1 —0.0041 0.015 0.0059
3 2 —0.025 0 0.0047
4 3 0.0409 —0.015 0.0107
Ton 1 0 00113 0 0
2 1 —0.0288 0.015 0.0059
3 2 —0.0015 —0.0106 —0.0039
4 3 —0.0449 0.03 —0.00089
O 1 0 0.0113 0 0
2 1 —0.0165 0.015 0.0091
3 2 —0.0257 —0.0053 0.000915
4 3 0.0369 0 —0.0147
for 0 = —45°
Gy n w, fim(8.K,), GPa gim(0), GPa hi(8). GPa
g, 1 0 0.0113 0 0
2 1 —0.165 0.015 0.0177
3 2 —0.025 0 0.0119
4 3 0.0409 —0.015 0.0158
G 1 0 0.0113 0 0
2 1 0.0082 0.015 —0.0295
3 2 0.0514 0.0106 —0.0045
4 3 —0.0449 0.03 0.0286
O 1 0 —0.0113 0 0
2 1 0.0041 —0.015 0.0027
3 2 —0.000728 —0.0053 —0.0095
4 3 0.0369 0 —0.0442

Comparisons of the stresses obtained by FEM and with eqn (78) are given in Figs 7-

11 for different components along different directions. It is shown that when four terms are
used in eqn (78) for r/L < 0.1 they also are in good agreement.

0.0250+
0.0200
0.0150+
0.0100-
0.0050~
0.00004

-0.0050+

_00100 TTT T LI T T 177171 T T T 717 T T
1E-04 1£-03 1£-02 1E-01 1E+00
r/L along the line8 =0

Fig. 7. Comparison of the stresses (in GPa) calculated by FEM (symbols) and with eqn (78) (lines)
along 6 = 0 for example 2.
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0.0300+

0.0250

¢

0.0200+

Or

0.0150+

0.0100+

0.0050+

OOOOO TT T T7TTT T T TTT T T TTT T "'?,

1E-04 1E-03 1£-02 1E-01 1E+00
r/L clong the line 8=90

Fig. 8. Comparison of the stresses (in GPa) calculated by FEM (symbols) and with eqn (78) (lines)
along 0 = 90 for example 2.

0.0250+

[¢

0.02004

Or

0.0150+

0.0100-

0.0050+

0.0000+

-0.0050++——r T Tt
1E-04 1E-03 1E-02 1£-01 1E+00

r/L along the line 8=-90

Fig. 9. Comparison of the stresses (in GPa) calculated by FEM (symbols) and with eqn (78) (lines)
along f = —90 for example 2.

0.0150+

0.0100+

0.0050+

0.0000

-0.0050+

_00100 T T TTT ¥ T 71T T T 77T T T TTT 1
1E-04 1E-03 1£-02 1£-01 1£400
r/L along the line 8=45

Fig. 10. Comparison of the stresses (in GPa) calculated by FEM (symbols) and with eqn (78) (lines)
along 6 = 45 for example 2.
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0.0150+

0.0100
0.0050+
0.0000-
~0.0050

-0.0100+

—-OO‘SO T T Ir 1 T 7 T T L |‘i 1
1£-04 1E~03 1£-02 1E-01 1E+00
r/L along the line 8=-45

Fig. 11. Comparison of the stresses (in GPa) calculated by FEM (symbols) and with eqn (78} (lines)
along 8 = —48 for example 2.

Example 3
The materials data for example 3 are

E, =100GPa v, =1 o, =25%10"¢K

ks

E,

I

100~ 507 = 1004 507 sin(6) GPa
[2.54377] %107 /K = [2.5+ 57 sin*(6)] * 107/K

f

&y

Vo =¥y

where the angle 8 is negative.

For this example we have 6G,/00 |,_, # 0 (i.e. B, # 0) and 87T5,(s+2,6)/00 14, = 0.
This is the case I, i.e. the poles of 6,(s, 8) depend on the value of v,. The poles of 6,(s, 0)
are s = ~2,—3, —4, —4.1529, —5,..., where s = —2, s = —~4.1529 and s = —35 are the

poles of the first-order of 6,(s,0), and s = —3 and s = —4 are the poles of the second-
order of 6,(s, 8). To calculate the stresses from eqn (78) only three terms are used. Because
the difference of s = —4 and s = ~4.1529 is small, it 1s difficult to determine, accurately,
the corresponding factors K, for s = —~4 and s = —4.1529 at the same time. Therefore,
eithers = —2, —3, —dory= —2, -3, —4.1529 are used to calculate the stresses from egn
(78).

If the poles s = —2, —3, —4.1529 are used, the quantities applied in eqn (78) to
calculate the stresses near the free edge of the interface in a joint with a graded material are
as follows for different components along different directions

for 8 = —90°
5, n @, S0, K,), GPa im0}, GPa 60y, GPa
g, 1 0 0.0284 0 0
2 1 0.06364 0 —0.006806
3 2.1529 0.0711 a [§]
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for 8 =0°
o, n , JSim(0.K,), GPa g:.(0), GPa h;;,(8), GPa
o, 1 0 0 0 0
2 1 0 0 —0.02563
3 2.1529 —14.57 0 0
T 1 0 0.0284 0 0
2 1 —0.0509 0.002698 0.001628
3 2.1529 0.07522 0 0
G 1 0 0 0 0
2 1 0.06364 0 —0.004688
3 2.1529 0 0 0
for § = —45°
a, n w, Sfinl0. K,), GPa 9::(0), GPa hin(0), GPa
o, i 0 0.0142 0 0
2 1 —0.04166 0.0009539 0.002505
3 2.1529 —0.1698 0 0
Gy 1 0 0.0142 0 0
2 1 0.04791 0.0009539 —0.005622
3 2.1529 0.2792 0 0
T 1 0 —0.0142 0 0
2 1 —0.003 —0.0009539 0.001354
3 2.1529 —0.03074 0 0

Comparisons of the stresses obtained by FEM and with eqn (78) are given in Figs 12-14
for different components along different directions. It is shown that when three terms with
s= —2,—3, —4.1529 are used in eqn (78) for r/L < 0.01 they are in good agreement.

If the poles s = —2, —3, —4 are used, comparisons of the stresses obtained by FEM
and with eqn (78) are given in Figs 15-17 for different components along different directions.
It is shown that when s = —2, —3, —4 are used in eqn (78) for r/L < 0.01 they also exhibit
a good agreement. By comparing Figs 12 and 15, Figs 13 and 16, Figs 14 and 17, we can
see that the agreement of the stresses obtained by FEM and with eqn (78) from three terms

with s = —2, —3, —4 is much better than that with s = —2, —3, —4.1529.

Example 4

The materials data for example 4 are

E, =100GPa v, =}

o =2.5%10"%/K

3

E, = 100— 505 = 100+ 507 sin(0) GPa

% = [2.5—57] 10~ ¢/K = [2.5+5Fsin(6)] * 10~°/K

v, =V,

O.OBOOW
0.0250+
0.0200
0.0150+
0.0100+
0.0050

0.0000-

-0.0050

LI T

1E-04

T TIT T

1E-03

T T

1E-02 1£-01

r/L along the line 8 = 0

Fig. 12. Comparison of the stresses (in GPa) calculated by FEM (symbols) and with eqn (78) (lines)

along 6 = 0 for example 3 with w, = 0,1.2.1529.
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Or

)
o
)
[*]
(e}
o]
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o]
(o}
[0}
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o]
[¢]

OOOO TT T T TT7 T TV 1TTT T T TTT T T TTT 1

1E-04 1£-03 1E-02 1E-01 1E+00

r/L along the line 8=—90
Fig. 13. Comparison of the stresses (in GPa) calculated by FEM (symbols) and with eqn (78) (lines)
along 6 = —90 for example 3 with o, = 0.1,2.1529.

0.0200+
0.0150+
0.0100+
0.0050
0.0000+
-0.0050+
-0.0100+
-0.0150~
-0.0200+————— T
1E-04 1£-03 1£-02 1E-01 1E400
r/L along the line B8=—45

Fig. 14. Comparison of the stresses (in GPa) calculated by FEM (symbols) and with eqn (78) (lines)
along ) = —45 for example 3 with w, = 0,1,2.1529.

-0.0050~—+ T T T T T T 17 T T T T
1E-03 2 4 1&8-02 2 4 1E-01 2 4 1400
r/L along the line8 =0
Fig. 15. Comparison of the stresses (in GPa) calculated by FEM (symbols) and with eqn (78) (lines)
along # = 0 for example 3 with w, = 0,1,2.
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0.080+
0.070+
0.060+4
0.050+
0.040+
0.030+
0.020+
0.010+
0.000]T] T T T7T T T TTT T T-TT1T T T TTT7
1E-04 1E-03 1E-02 1E-01 1£+00
r/L along the line 8=—90

Fig. 16. Comparison of the stresses (in GPa) calculated by FEM (symbols) and with eqn (78) (lines)
along 0 = —90 for example 3 with w, = 0,1, 2.

oy

-0.0200-+— LA R e o
1E-032 4 1E-022 4 1E-012 4 1E400 2
r/L along the line8 =—45
Fig. 17. Comparison of the stresses (in GPa) calculated by FEM (symbols) and with eqn (78) (lines)
along & = —45 for example 3 with w, = 0. 1,2.

T T 1T 17 T 17T

where the angle @ is negative. For this example we have 8G,/d0 |,_, # 0 (i.e. B, # 0) and
0T5,(s42,0)/00|,_, # 0. This is the case 11, i.e. the poles of &,(s, §) depend on the value of
v,, Whichares = —2, —3, —4, —4.1529, —5,.... However, the right-hand side of eqn (30)
is different as that for example 3. As in example 3, only three terms are used to calculate
the stresses from eqn (78), where s = —2, —3, —4.1529. s = —2 and s = —4.1529 are the
poles of the first-order of 6,(s,0) and s = —3 is the pole of the second-order of (s, 9).

The quantities used in eqn (78) to calculate the stresses near the free edge of the interface

of a joint with a graded material are as follows for different components along different
directions :

for 0 = 90°
a, n w, Jin(0. K,), GPa 95(0), GPa hi(8), GPa
G, 1 0 0.02594 0 0
2 1 -0.0262 0 —0.01682
3 2.1529 —0.02203 0 0
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for 8 = 0°
g, n w, [0, K,), GPa g,8), GPa h,(8), GPa
o, 1 0 0 0 0
2 1 0 0 —0.02563
3 2.1529 1.719 0 0
oo 1 0 0.02597 0 0
2 1 —0.008242 0.05126 0.02083
3 2.1529 —0.5154 0 0
G, 1 0 0 0 0
2 1 0.0262 0 —0.02344
3 2.1529 0 0 0
for 8 = 45°
o, n w, S8, K,), GPa 9.(0), GPa h,u(8), GPa
a, 1 0 0.01297 0 0
2 1 —0.006335 0.01812 0.004249
3 2.1529 —0.01149 0 0
Gap 1 0 0.01297 0 0
2 1 —0.0307 0.01812 0.008927
3 2.1529 0.01562 0 0
[ 1 0 0.01297 0 0
2 1 -0.0122 0.01812 0.01048
3 2.1529 —0.0067 0 0
for 8 = —45°
g, n W, fin(0.K,), GPa gin(0), GPa h,,(8), GPa
G, 1 0 0.01297 0 0
2 ] —0.0122 0.01812 0.02082
3 2.1529 —0.01149 0 0
oo 1 0 0.01297 0 0
2 1 0.0249 0.01812 —0.04079
3 2.1529 0.01562 0 0
o 1 0 —0.01297 0 0
2 1 —0.006335 —0.01812 0.006069
3 2.1529 0.0067 0 0
for 8 = —90°
g, n W, fim(8, K,), GPa g:(0), GPa h(6), GPa
o, 1 0.02594 0 0
2 1 0.0262 0 —0.0637
3 2.1529 —0.02203 0 0

Comparisons of the stresses obtained by FEM and with eqn (78) are given in Figs 18—
22 for different components along different directions. It is shown that when three terms
withs = —2, —3, —4.1529 are used in eqn (78) for r/L < 0.01 they are in good agreement.
If three terms with s = —2, —3, —4 are used in eqn (78), the agreement is much better.
From examples 1 to 4 it can be seen that if three terms in eqn (78) are considered the poles
s = —2, —3, —4 can be always used to describe the stresses in the range of r/L < 0.01 very

well.

In this paper a method has been presented to describe analytically the stress distribution
near the free edge of the interface in a joint with a graded material under a thermal loading.
The stresses near the free edge of the interface in a joint with a graded material can be

described by

CONCLUSIONS
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Fig. 18. Comparison of the stresses (in GPa) calculated by FEM (symbols) and with eqn (78) (lines)
along @ = 0 for example 4.
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Fig. 19. Comparison of the stresses (in GPa) calculated by FEM (symbols) and with eqn (78) (lines)
along 8 = 90 for example 4.
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Fig. 20. Comparison of the stresses (in GPa) calculated by FEM (symbols) and with eqn (78) (lines)
along 6 = —90 for example 4.
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Fig. 21. Comparison of the stresses (in GPa) calculated by FEM (symbols) and with eqn (78) (lines)
along 6 = 45 for example 4.
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Fig. 22. Comparison of the stresses (in GPa) calculated by FEM (symbols) and with egn (78) (lines)
along 0 = —45 for example 4.

N

a(r.0) = 3, (/L) fi(0, K,) +giu(O)In(r/ L)+, (0)]} (85)

n=1
with
f;[n(()ﬂ Kn) = KH] E/IH (0) + KI:ZF(/'IIZ (0) +K113Fi/n](9) + e (86)

where the angular functions F,, (&) (/ = 1,2.3,...), ¢.,,(0) and /,,(8) and the stress exponent
, can be determined analytically. They are a function of the profile of the shear modulus
G and the thermal expansion coefficient o, and also a function of the value of the Poisson’s
ratio v and the geometry (angles 6. 6,). For a finite joint the factors K, are unknown. They
have to be determined from the stresses calculated by FEM. The functions F,,(8), g,,,(6)
and %,,,(0) have the unit of the stress, i.e. MPa or GPa, and K, is dimensionless. The stresses
a,/(r, 0) are proportional to the temperature change 7.

In a quarter-planes joint for the case, in which the graded material has the profile of a
polynomial and it is only dependent on the coordinate y, as long as the polynomial in the
Y oung’s modulus £ has no linear term, the stress exponent o, is independent of the material
property v and G,, and there is always w, = 0,1,2,3,....n,.... If the polynomial in the
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Young’s modulus E has a linear term, the stress exponent w,, is dependent on the material
property v, G, and the stress state (plane stress or plane strain), the stress exponents are
w,=0,1,2,3,...,n,...plus those which are dependent on the material properties v, G, and
the stress state.

Four examples for different cases have been presented for a finite joint with a graded
material. Comparisons of the stresses obtained by FEM and from the analytical description
have shown that if three terms in eqn (78) are used for r/L < 0.01 they are in good
agreement. In the case of a polynomial without a linear term, good agreement is obversed
even for r/L < 0.1.
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